Add like
Add dislike
Add to saved papers

Probing the druggability of membrane-bound Rab5 by molecular dynamics simulations.

Rab5 is a small GTPase and a key regulator in early endosomal trafficking. Rab5 and its effectors are involved in a large number of infectious diseases and certain types of cancer. We performed µs atomistic molecular dynamics simulations of inactive and active full-length Rab5 anchored to a complex model bilayer with composition of the early endosome membrane. Direct interactions between the Rab5 G domain and the bilayer were observed. We found two dominant nucleotide-dependent orientations characterised by a different accessibility of the switch regions. The "buried switch" orientation was mainly associated with inactive Rab5 accompanied with a rather extended structure of the hypervariable C-terminal region. Active Rab5 preferred an orientation in which the switch regions are accessible to effector proteins. These structural differences may provide an opportunity to selectively target one Rab5 state and lead to new approaches in the development of Rab5-specific therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app