Add like
Add dislike
Add to saved papers

A multi-body dynamics study on a weight-drop test of rat brain injury.

Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app