Add like
Add dislike
Add to saved papers

Transcriptomic analysis of diplomonad parasites reveals a trans-spliced intron in a helicase gene in Giardia.

PeerJ 2017
BACKGROUND: The mechanisms by which DNA sequences are expressed is the central preoccupation of molecular genetics. Recently, ourselves and others reported that in the diplomonad protist Giardia lamblia, the coding regions of several mRNAs are produced by ligation of independent RNA species expressed from distinct genomic loci. Such trans-splicing of introns was found to affect nearly as many genes in this organism as does classical cis-splicing of introns. These findings raised questions about the incidence of intron trans-splicing both across the G. lambliatranscriptome and across diplomonad diversity in general, however a dearth of transcriptomic data at the time prohibited systematic study of these questions.

METHODS: I leverage newly available transcriptomic data from G. lamblia and the related diplomonad Spironucleus salmonicidato search for trans-spliced introns. My computational pipeline recovers all four previously reported trans-spliced introns in G. lamblia, suggesting good sensitivity.

RESULTS: Scrutiny of thousands of potential cases revealed only a single additional trans-spliced intron in G. lamblia, in the p68 helicase gene, and no cases in S. salmonicida. The p68 intron differs from the previously reported trans-spliced introns in its high degree of streamlining: the core features of G. lamblia trans-spliced introns are closely packed together, revealing striking economy in the implementation of a seemingly inherently uneconomical molecular mechanism.

DISCUSSION: These results serve to circumscribe the role of trans-splicing in diplomonads both in terms of the number of genes effected and taxonomically. Future work should focus on the molecular mechanisms, evolutionary origins and phenotypic implications of this intriguing phenomenon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app