Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RSM22, mtYsxC and PNKD-like proteins are required for mitochondrial translation in Trypanosoma brucei.

Mitochondrion 2017 May
Mitochondrial ribosomes evolved from prokaryotic ribosomes, with which they therefore share more common features than with their counterparts in the cytosol. Yet, mitochondrial ribosomes are highly diverse in structure and composition, having undergone considerable changes, including reduction of their RNA component and varying degree of acquisition of novel proteins in various phylogenetic lineages. Here, we present functional analysis of three putative mitochondrial ribosome-associated proteins (RSM22, mtYsxC and PNKD-like) in Trypanosoma brucei, originally identified by database mining. While in other systems the homologs of RSM22 are known as components of mitochondrial ribosomes, YsxC was linked with ribosomes only in bacteria. The PNKD-like protein shows similarity to a human protein, the defects of which cause PNKD (paroxysmal non-kinesigenic dyskinesia). Here we show that all three proteins are important for the growth of T. brucei. They play an important function in mitochondrial translation, as their ablation by RNAi rapidly and severely affected the de novo synthesis of mitochondrial proteins. Moreover, following the RNAi-mediated depletion of RSM22, structure of the small subunit of mitochondrial ribosome becomes severely compromised, suggesting a role of RSM22 in ribosomal assembly and/or stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app