Add like
Add dislike
Add to saved papers

Optimal Regulatory Circuit Topologies for Fold-Change Detection.

Cell Systems 2017 Februrary 23
Evolution repeatedly converges on only a few regulatory circuit designs that achieve a given function. This simplicity helps us understand biological networks. However, why so few circuits are rediscovered by evolution is unclear. We address this question for the case of fold-change detection (FCD): a response to relative changes of input rather than absolute changes. Two types of FCD circuits recur in biological systems-the incoherent feedforward and non-linear integral-feedback loops. We performed an analytical screen of all three-node circuits in a class comprising ∼500,000 topologies. We find that FCD is rare, but still there are hundreds of FCD topologies. The two experimentally observed circuits are among the very few minimal circuits that optimally trade off speed, noise resistance, and response amplitude. This suggests a way to understand why evolution converges on only few topologies for a given function and provides FCD designs for synthetic construction and future discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app