Add like
Add dislike
Add to saved papers

HINT2 downregulation promotes colorectal carcinoma migration and metastasis.

Oncotarget 2017 Februrary 22
Histidine triad nucleotide-binding 2 (HINT2), a member of the histidine triad proteins family, sensitizes cells to apoptosis in hepatocellular carcinoma. Here, we showed that HINT2 expression is lower in primary colorectal cancer (CRC) and metastasis tissues than in normal colorectal tissues, and that HINT2 abundance is inversely correlated with CRC tumor stage. Treating CRC cells with 5-aza-2'-deoxycytidine, a demethylating agent, upregulated HINT2, suggesting HINT2 downregulation is caused by methylation of the gene promoter. HINT2 downregulation increased tumor migration and invasion in vitro, promoted CRC cell metastasis in vivo, and increased expression of epithelial-to-mesenchymal transition (EMT) markers. Furthermore, HINT2 downregulation depended on hypoxia inducible factor (HIF)-2α-mediated transcriptional activation of zinc finger E-box-binding homeobox 1 (ZEB1). These results suggest that HINT2 downregulation promotes HIF-2α expression, which induces EMT and enhances CRC cell migration and invasion. HINT2 may thus a useful clinical indicator of CRC progression and metastasis risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app