JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of dissolved Mn(III) in transformation of organic contaminants: Non-oxidative versus oxidative mechanisms.

Water Research 2017 March 16
Mn(III) is a strong oxidant for one electron transfer, which may be important in the transformation of organic contaminants during water/wastewater treatment and biogeochemical redox processes. This study explored the reaction mechanisms of dissolved Mn(III) with organics. The role of dissolved Mn(III) either as a catalyst or an oxidant in reactions with organics was recognized. Aquo and/or hydroxo (or free) Mn(III), generated from the bisulfite activated permanganate process, facilitated efficient N-dealkylation of atrazine via a β-elimination mechanism, resulting no net redox reaction. In contrast, free Mn(III) degraded 4-chlorophenol via intramolecular redox processes, the same as hydroxyl radical (OH), resulting in dechlorination,OH substitution, ring-opening and mineralization. Mn(III)-pyrophosphate compounds did not react with atrazine because complexation by pyrophosphate rendered Mn(III) unable to bond with atrazine, thus the electron and proton transfers between the reactants couldn't occur. However, it degraded 4-chlorophenol at a slower rate compared to free Mn(III), due to its reduced oxidation potential. These results showed two distinct mechanisms on the degradation of organic contaminants and the insights may be applied in natural manganese-rich environments and water treatment processes with manganese compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app