Add like
Add dislike
Add to saved papers

Support-dependent active species formation for CuO catalysts: Leading to efficient pollutant degradation in alkaline conditions.

Redox metal ions play the crucial role in versatile advanced oxidation technologies, in which controlling the active species formation through catalyst design is one of the key challenges in oxidant utilization. This work describes an example of different active species formations in CuO-mediated degradation just because of supporting material differences. Although three CuO catalysts were prepared by similar procedures, it was found that CuO-MgO catalyst demonstrated high efficiency in phenol degradation with bicarbonate activated H2 O2 , in which the superoxide radical is crucial, while hydroxyl radical and singlet oxygen are ignorable. For the CuO-MgO-Al2 O3 and CuO-Al2 O3 catalysts, the degradation proceeds by popular hydroxyl radical based process, however, the efficiency was poor. The EPR experiments also confirmed the absence of hydroxyl radical in CuO-MgO system but its presence in CuO-MgO-Al2 O3 and CuO-Al2 O3 system. The high catalytic efficiency with ignorable hydroxyl radical in the CuO-MgO system leads us to propose that an alternative Cu(III) species dominates the degradation. The basic MgO support may facilitate the formation of the Cu(III) species, whereas the neutral MgO-Al2 O3 and acidic Al2 O3 supports are unable to stabilize the high valent Cu(III) species, leading to the common hydroxyl radical mechanism with low efficiency of H2 O2 in alkaline conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app