Add like
Add dislike
Add to saved papers

Msi1 promotes tumor progression by epithelial-to-mesenchymal transition in cervical cancer.

Human Pathology 2017 July
Musashi1 (Msi1) is an RNA-binding protein that has been reported to be a pivotal regulator in tumorigenesis and progression in several cancers. However, its function and mechanism in cervical cancer is still unknown. In this study, Msi1 expression was found elevated in cervical cancers by immunohistochemistry and correlated with poor outcomes. Then, endogenous Msi1 was silenced in cervical cancer cell lines by short hairpin RNA, and its function and mechanism were determined. The results showed that the silencing of Msi1 in SiHa and HeLa cells inhibited the cells' migratory and invasive abilities in vitro and tumor progression in vivo. Epithelial-to-mesenchymal transition (EMT) markers were down-regulated, and Wnt activity was inhibited by the silencing of Msi1. In clinical tissues, positive correlations between Msi1 and EMT markers were found. In conclusion, Msi1, a diagnostic marker and potential therapeutic target, promoted the EMT progression through activation of the Wnt signaling pathway in cervical cancers, thereby contributing to poor prognosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app