Add like
Add dislike
Add to saved papers

MARS: improving multiple circular sequence alignment using refined sequences.

BMC Genomics 2017 January 15
BACKGROUND: A fundamental assumption of all widely-used multiple sequence alignment techniques is that the left- and right-most positions of the input sequences are relevant to the alignment. However, the position where a sequence starts or ends can be totally arbitrary due to a number of reasons: arbitrariness in the linearisation (sequencing) of a circular molecular structure; or inconsistencies introduced into sequence databases due to different linearisation standards. These scenarios are relevant, for instance, in the process of multiple sequence alignment of mitochondrial DNA, viroid, viral or other genomes, which have a circular molecular structure. A solution for these inconsistencies would be to identify a suitable rotation (cyclic shift) for each sequence; these refined sequences may in turn lead to improved multiple sequence alignments using the preferred multiple sequence alignment program.

RESULTS: We present MARS, a new heuristic method for improving Multiple circular sequence Alignment using Refined Sequences. MARS was implemented in the C++ programming language as a program to compute the rotations (cyclic shifts) required to best align a set of input sequences. Experimental results, using real and synthetic data, show that MARS improves the alignments, with respect to standard genetic measures and the inferred maximum-likelihood-based phylogenies, and outperforms state-of-the-art methods both in terms of accuracy and efficiency. Our results show, among others, that the average pairwise distance in the multiple sequence alignment of a dataset of widely-studied mitochondrial DNA sequences is reduced by around 5% when MARS is applied before a multiple sequence alignment is performed.

CONCLUSIONS: Analysing multiple sequences simultaneously is fundamental in biological research and multiple sequence alignment has been found to be a popular method for this task. Conventional alignment techniques cannot be used effectively when the position where sequences start is arbitrary. We present here a method, which can be used in conjunction with any multiple sequence alignment program, to address this problem effectively and efficiently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app