Add like
Add dislike
Add to saved papers

Sanguinarine-induced oxidative stress and apoptosis-like programmed cell death(AL-PCD) in root meristem cells of Allium cepa.

A vast number of studies on plant cell systems clearly indicate that various biotic and abiotic stresses give rise to the uncontrolled increase in the level of reactive oxygen species (ROS). Excess concentrations of ROS result in damage to proteins, lipids, carbohydrates, and DNA, which may lead, in consequence, to the apoptotic cell death. The current study investigates the effects of sanguinarine (SAN), a natural alkaloid derived from the roots of Sanguinaria canadensis, on root apical meristem cells of Allium cepa. It is shown that SAN treatment generated large amounts of hydrogen peroxide (H2 O2 ) and superoxide anion (O2 ·-). Oxidative stress induced in SAN-treated cells was correlated with DNA fragmentation, formation of micronuclei (MN), altered and 'degenerated' chromatin structures characteristic of apoptosis-like programmed cell death (AL-PCD). The experiments with SAN + MG132 (a proteasome inhibitor engaged in Topo II-mediated formation of cleavable complexes) and SAN + ascorbic acid (AA; H2 O2 scavenger) seem to suggest, however, that the high level of H2 O2 is not the only factor responsible for changes observed at the chromatin level and for the consequent cell death. Our findings imply that Topo II-DNA covalent complexes and 26S proteasomes are also involved in SAN-induced DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app