Add like
Add dislike
Add to saved papers

Electrophysiologic effects of the IK1 inhibitor PA-6 are modulated by extracellular potassium in isolated guinea pig hearts.

The pentamidine analog PA-6 was developed as a specific inward rectifier potassium current (IK 1 ) antagonist, because established inhibitors either lack specificity or have side effects that prohibit their use in vivo. We previously demonstrated that BaCl2 , an established IK 1 inhibitor, could prolong action potential duration (APD) and increase cardiac conduction velocity (CV). However, few studies have addressed whether targeted IK 1 inhibition similarly affects ventricular electrophysiology. The aim of this study was to determine the effects of PA-6 on cardiac repolarization and conduction in Langendorff-perfused guinea pig hearts. PA-6 (200 nm) or vehicle was perfused into ex-vivo guinea pig hearts for 60 min. Hearts were optically mapped with di-4-ANEPPS to quantify CV and APD at 90% repolarization (APD90 ). Ventricular APD90 was significantly prolonged in hearts treated with PA-6 (115 ± 2% of baseline; P < 0.05), but not vehicle (105 ± 2% of baseline). PA-6 slightly, but significantly, increased transverse CV by 7%. PA-6 significantly prolonged APD90 during hypokalemia (2 mmol/L [K+]o ), although to a lesser degree than observed at 4.56 mmol/L [K+]o In contrast, the effect of PA-6 on CV was more pronounced during hypokalemia, where transverse CV with PA-6 (24 ± 2 cm/sec) was significantly faster than with vehicle (13 ± 3 cm/sec, P < 0.05). These results show that under normokalemic conditions, PA-6 significantly prolonged APD90 , whereas its effect on CV was modest. During hypokalemia, PA-6 prolonged APD90 to a lesser degree, but profoundly increased CV Thus, in intact guinea pig hearts, the electrophysiologic effects of the IK 1 inhibitor, PA-6, are [K+]o -dependent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app