Add like
Add dislike
Add to saved papers

E152A substitution drastically affects NDM-5 activity.

FEMS Microbiology Letters 2017 Februrary 2
New Delhi Metallo beta-lactamase (NDM) is of significant public health concern due to its enormous potential to hydrolyse all major beta-lactams including carbapenems. Amino acid substitutions outside the active site reportedly affect NDM beta-lactamase activities. Here, the effect of amino acid substitutions in the possible omega-like loop region of NDM-5 has been elucidated. Overall, three substitution mutations near active site of NDM-5 were done, namely, E152A, S191A and D223A and subsequently, the change in antimicrobial resistance was monitored upon expressing each mutant in a suitable host. Among the three mutants, E152A substitution on a loop near the active site resulted in significant reduction in beta-lactam antibiotic resistance as compared to NDM-5 that compelled us to conduct further studies on the E152A-substituted NDM-5. The purified NDM-5 was able to hydrolyse all the beta-lactams tested whereas the E152A mutation suppressed its activities. NDM-5 showed maximum kcat/Km ratio against penicillins and carbapenems and had lower Km as compared to NDM-5_E152A. Though, the amino acid substitution did not affect the overall folding pattern of NDM-5, significant differences in thermal stability between the wild-type and mutated protein were observed. Therefore, we infer that the E152 residue is important in regulating the beta-lactam hydrolysing properties of NDM-5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app