Add like
Add dislike
Add to saved papers

Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries.

During winemaking, sulfur dioxide (SO2 ) is often added prior to the onset of alcoholic fermentation to prevent the growth of spoilage microorganisms and to create an environment that promotes the rapid colonization of the grape must by Saccharomyces cerevisiae. Most recent research has focused on the impacts of SO2 additions on spoilage microorganisms or on the yeast community at a species level, but less is known about the impacts that SO2 additions have on S. cerevisiae populations. We investigated whether different levels of SO2 addition at crush (0, 20, or 40mg/L SO2 ) have an effect upon the relative abundance and composition of S. cerevisiae strains conducting spontaneous fermentations of two grape varietals at two commercial wineries. Yeast isolates collected from fermentations were identified to the strain level using microsatellite analysis. Commercial strains made up the majority (64-98%) of the S. cerevisiae strains isolated during fermentation, and most of these commercial strains were used as inoculants by their respective wineries. Different SO2 additions were found to significantly alter S. cerevisiae strain compositions at both wineries (p≤0.002). The results of this study demonstrate that initial SO2 addition significantly alters the S. cerevisiae strain composition in spontaneous fermentations, and highlights the dominance of commercial strains in commercial winery environments. Because different yeast strains are known to produce different chemical and sensory profiles, our findings have important implications for winemakers. In addition, adding different concentrations of SO2 may be a way for winemakers to manage or control the strain composition during spontaneous fermentations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app