JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

"Click Chip" Conjugation of Bifunctional Chelators to Biomolecules.

There is a growing demand for diagnostic procedures including in vivo tumor imaging. Radiometal-based imaging agents are advantageous for tumor imaging because radiometals (i) have a wide range of half-lives and (ii) are easily incorporated into imaging probes via a mild, rapid chelation event with a bifunctional chelator (BFC). Microfluidic platforms hold promise for synthesis of radiotracers because they can easily handle minute volumes, reduce consumption of expensive reagents, and minimize personnel exposure to radioactive compounds. Here we demonstrate the use of a "click chip" with an immobilized Cu(I) catalyst to facilitate the "click chemistry" conjugation of BFCs to biomolecules (BMs); a key step in the synthesis of radiometal-based imaging probes. The "click chip" was used to synthesize three different BM-BFC conjugates with minimal amounts of copper present in reaction solutions (∼20 ppm), which reduces or obviates the need for a copper removal step. These initial results are promising for future endeavors of synthesizing radiometal-based imaging agents completely on chip.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app