Add like
Add dislike
Add to saved papers

Resonator with Ultrahigh Length Stability as a Probe for Equivalence-Principle-Violating Physics.

Physical Review Letters 2016 December 31
In order to investigate the long-term dimensional stability of matter, we have operated an optical resonator fabricated from crystalline silicon at 1.5 K continuously for over one year and repeatedly compared its resonance frequency f_{res} with the frequency of a GPS-monitored hydrogen maser. After allowing for an initial settling time, over a 163-day interval we found a mean fractional drift magnitude |f_{res}^{-1}df_{res}/dt|<1.4×10^{-20}/s. The resonator frequency is determined by the physical length and the speed of light and we measure it with respect to the atomic unit of time. Thus the bound rules out, to first order, a hypothetical differential effect of the Universe's expansion on rulers and atomic clocks. We also constrain a hypothetical violation of the principle of local position invariance for resonator-based clocks and derive bounds for the strength of space-time fluctuations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app