Add like
Add dislike
Add to saved papers

Dependence of the Spectrum of Shock-Accelerated Ions on the Dynamics at the Shock Crossing.

Physical Review Letters 2016 December 31
Diffusive shock acceleration (DSA) of ions occurs due to pitch-angle diffusion in the upstream and downstream regions of the shock and multiple crossing of the shock by these ions. The classical DSA theory implies continuity of the distribution at the shock transition and predicts a universal spectrum of accelerated particles, depending only on the ratio of the upstream and downstream fluid speeds. However, the ion dynamics at the shock front occurs within a collision-free region and is gyrophase dependent. The ions fluxes have to be continuous at the shock front. The matching conditions for the gyrophase-averaged distribution functions at the shock transition are formulated in terms of the transition and reflection probabilities. These probabilities depend on the shock angle and the magnetic compression as does the power spectrum of accelerated ions. Their spectral index is expressed in terms of the reflectivity. The spectrum is typically harder than the spectrum predicted by the classical DSA theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app