Add like
Add dislike
Add to saved papers

Hourglass Dispersion and Resonance of Magnetic Excitations in the Superconducting State of the Single-Layer Cuprate HgBa_{2}CuO_{4+δ} Near Optimal Doping.

Physical Review Letters 2016 December 31
We use neutron scattering to study magnetic excitations near the antiferromagnetic wave vector in the underdoped single-layer cuprate HgBa_{2}CuO_{4+δ} (superconducting transition temperature T_{c}≈88  K, pseudogap temperature T^{*}≈220  K). The response is distinctly enhanced below T^{*} and exhibits a Y-shaped dispersion in the pseudogap state, whereas the superconducting state features an X-shaped (hourglass) dispersion and a further resonancelike enhancement. A large spin gap of about 40 meV is observed in both states. This phenomenology is reminiscent of that exhibited by bilayer cuprates. The resonance spectral weight, irrespective of doping and compound, scales linearly with the putative binding energy of a spin exciton described by an itinerant-spin formalism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app