JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Yeast's balancing act between ethanol and glycerol production in low-alcohol wines.

Alcohol is fundamental to the character of wine, yet too much can put a wine off-balance. A wine is regarded to be well balanced if its alcoholic strength, acidity, sweetness, fruitiness and tannin structure complement each other so that no single component dominates on the palate. Balancing a wine's positive fruit flavours with the optimal absolute and relative concentration of alcohol can be surprisingly difficult. Over the past three decades, consumers have increasingly demanded wine with richer and riper fruit flavour profiles. In response, grape and wine producers have extended harvest times to increase grape maturity and enhance the degree of fruit flavours and colour intensity. However, a higher degree of grape maturity results in increased grape sugar concentration, which in turn results in wines with elevated alcohol concentration. On average, the alcohol strength of red wines from many warm wine-producing regions globally rose by about 2% (v/v) during this period. Notwithstanding that many of these 'full-bodied, fruit-forward' wines are well balanced and sought after, there is also a significant consumer market segment that seeks lighter styles with less ethanol-derived 'hotness' on the palate. Consumer-focussed wine producers are developing and implementing several strategies in the vineyard and winery to reduce the alcohol concentration in wines produced from well-ripened grapes. In this context, Saccharomyces cerevisiae wine yeasts have proven to be a pivotal strategy to reduce ethanol formation during the fermentation of grape musts with high sugar content (> 240 g l-1 ). One of the approaches has been to develop 'low-alcohol' yeast strains which work by redirecting their carbon metabolism away from ethanol production to other metabolites, such as glycerol. This article reviews the current challenges of producing glycerol at the expense of ethanol. It also casts new light on yeast strain development programmes which, bolstered by synthetic genomics, could potentially overcome these challenges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app