JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neoagarotetraose protects mice against intense exercise-induced fatigue damage by modulating gut microbial composition and function.

SCOPE: Exhaustive exercise stress has emerged as an important health issue, and gastrointestinal problems are a common concern during intense exercise. In this study, we investigated the potential antifatigue effects of neoagarotetraose (NAT) in mice under intense exercise stress.

MATERIALS AND METHODS: Exhaustive exercise stress significantly weakened several physiological and physical parameters of the mice, including decreased food intake, reduced body weight, and impaired integrity of the intestinal epithelial barrier. Our data showed that a 16-day NAT treatment resulted in a profound change in microbiome composition, which subsequently led to widespread shifts in the functional potential of the gut microbiome. Furthermore, NAT administration significantly increased the fecal concentration of total short-chain fatty acids (p < 0.01).

CONCLUSION: Together, our findings suggest that NAT may protect mice against intense exercise-induced fatigue and provide insights into the mechanisms of NAT as a potential prebiotic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app