Add like
Add dislike
Add to saved papers

Metabolic profiling of human plasma and urine in chronic kidney disease by hydrophilic interaction liquid chromatography coupled with time-of-flight mass spectrometry: a pilot study.

A typical characteristic of chronic kidney disease (CKD) is the progressive loss in renal function over a period of months or years with the concomitant accumulation of uremic retention solutes in the body. Known biomarkers for the kidney deterioration, such as serum creatinine or urinary albumin, do not allow effective early detection of CKD, which is essential towards disease management. In this work, a hydrophilic interaction liquid chromatography time-of-flight mass spectrometric (HILIC-TOF MS) platform was optimized allowing the search for novel uremic retention solutes and/or biomarkers of CKD. The HILIC-ESI-MS approach was used for the comparison of urine and plasma samples from CKD patients at stage 3 (n = 20), at stage 5 not yet receiving dialysis (n = 20) and from healthy controls (n = 20). Quality control samples were used to control and ensure the validity of the metabolomics approach. Subsequently the data were treated with the XCMS software for multivariate statistical analysis. In this way, differentiation could be achieved between the measured metabolite profile of the CKD patients versus the healthy controls. The approach allowed the elucidation of a number of metabolites that showed a significant up- and downregulation throughout the different stages of CKD. These compounds are cinnamoylglycine, glycoursodeoxycholic acid, 2-hydroxyethane sulfonate, and pregnenolone sulfate of which the identity was unambiguously confirmed via the use of authentic standards. The latter three are newly identified uremic retention solutes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app