Add like
Add dislike
Add to saved papers

Rigidifying flexible sites: An approach to improve stability of chondroitinase ABC I.

The stability of chondroitin ABC lyase I (cABC I) at physiological temperature is one of the current obstacles to its clinical application. In this study, we used a protein engineering approach; rigidify flexible sites, to improve stability of cABC I. B-factor analysis showed a flexible loop at the N-terminal domain of cABC I which may be involved in its thermal instability and five residues in this region were replaced with proline. Thermal inactivation and thermal denaturation analysis revealed that Glu138Pro mutation increased half-life and Tm of enzyme, respectively. The Km values of mutated enzymes were slightly increased compared to the wild type enzyme. The results of limited proteolysis indicated that Glu138Pro mutant was more resistant against trypsinolysis and this variant was less quenched in both acrylamide and KI quenching experiments. Moreover, intrinsic fluorescence intensity of Glu138Pro variant was increased and its ANS fluorescence intensity was decreased, whereas no considerable changes were observed in the far-UV CD spectra. The structural analyses indicated compactness of structure of Glu138Pro enzyme which can be related to moderately enhanced stability of this mutant. This study demonstrated that rigidifying flexible residues can be considered as a possible approach to increase the stability of the protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app