JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.

Acta Biomaterialia 2017 March 16
The design of self-sterilizing surfaces with favorable biocompatibility is acknowledged as an effective approach to deal with the bacterial infections of biomedical devices. In this study, we report an intriguing protocol for the large-scale fabrication of self-sterilizing and biocompatible surface film coatings by using polymer shielded silver nanoparticle loaded oxidized carbon nanotube (AgNPs@oCNT) nano-dispersions. To achieve the antibacterial coatings, the bioinspired positively charged and negatively charged AgNPs@oCNTs were alternately deposited onto substrates by spray-coating assisted layer-by-layer assembly. Then the bacterial inhibitory zones, optical density value monitoring, bacterial killing efficiency and adhesion were investigated; and all the results revealed that the AgNPs@oCNTs thin film coatings exhibited robust and long-term antibacterial activity against both Gram negative and Gram positive bacteria. Moreover, due to the shielding effects of polymer layers, the coatings showed extraordinary blood compatibility and limited toxicity against human umbilical vein endothelial cells. It is believed that the proposed large-scale fabrication of bactericidal, blood and cell compatible AgNPs@oCNT based thin film coatings will have great potential to forward novel operational pathogenic inhibition strategies to avoid undesired bacterial contaminations of biomedical implants or biological devices.

STATEMENT OF SIGNIFICANCE: Bacterial infection of medical devices has been considered to be a world-wide clinical threat towards patients' health. In this study, a bioinspired and biocompatible antibacterial coating was prepared via the spray-assisted layer-by-layer (LbL) assembly. The silver nanopartilces loaded oxidized carbon nanotube (AgNPs@oCNT), which were coated by functional polymers (chitosan and synthetic heparin mimicking polymers), were prepared via mussel inspired chemistry; and the spray-assisted assembly process allowed the fast construction on devices. Owing to the antibacterial efficiency of the loaded AgNPs, the coating showed robust bacterial killing activity and resistance towards bacterial adhesion. Moreover, since that the AgNPs were shielded by the polymers, the coating exhibited no clear toxicity at blood or cellular level. Benefiting from the universal and large-scale fabrication advancements of the spray assisted LbL coating; it is believed that the proposed strategy can be applied in designing many other kinds of self-sterilizing biomedical implants and devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app