Add like
Add dislike
Add to saved papers

Fruiting Bodies of Antrodia cinnamomea and Its Active Triterpenoid, Antcin K, Ameliorates N-Nitrosodiethylamine-Induced Hepatic Inflammation, Fibrosis and Carcinogenesis in Rats.

Antrodia cinnamomea (A. cinnamomea), a popular medicinal mushroom in Taiwan, is widely used to prevent or treat liver diseases. Systematic studies on the anti-inflammatory effect of A. cinnamomea and its molecular mechanisms have not yet been fully investigated. HPLC fingerprint analysis identified seven ergostane-type triterpenoids from A. cinnamomea water extract (ACW), including high amounts of Antcin K (AC), Antcin C, Antcin H, Dehydrosulphurenic acid, Antcin B, Antcin A and Dehydroeburicoic acid. Here, we explored the effects and mechanisms of ACW and the highest content AC on N-nitrosodiethylamine (DEN) induced liver inflammation, fibrosis and carcinogenesis in rats. In the in vitro study, we measured how ACW and AC dose-dependently scavenged O[Formula: see text], H2O2 and HOCl by a chemiluminescence analyzer. In the in vivo experiment, oral intake ACW and AC significantly inhibited DEN-enhanced hepatocellular inflammation, fibrosis and carcinoma by pathologic observation, the elevated bile and liver reactive oxygen species (ROS) amounts, plasma [Formula: see text]-glutamyl transpeptidase, and oxidative stress including 3-nitrotyrosine, 4-hydroxynonenal and Kuppfer cell infiltration (ED-1 stains) in the inflammatory livers. DEN enhanced nuclear factor-[Formula: see text]B (NF-[Formula: see text]B) translocation, whereas ACW and AC suppressed DEN-enhanced NF-[Formula: see text]B translocation through the inhibition of its upstream signaling of p85/phosphoinositide-3-kinase, mitogen activated protein kinase and CYP2E1 expression. In conclusion, DEN can induce hepatocellular inflammation, fibrosis and carcinoma by increasing NF-[Formula: see text]B translocation to the nucleus, and oxidative injury. ACW and its active component, Antcin K, counteract DEN-induced hepatic injury and inflammation by the protective and therapeutic mechanisms of a direct scavenging ROS activity and an upregulation of anti-oxidant defense mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app