JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Electron spin relaxation of a boron-containing heterocyclic radical.

Preparation of the stable boron-containing heterocyclic phenanthrenedione radical, (C6 F5 )2 B(O2 C14 H8 ), by frustrated Lewis pair chemistry has been reported recently. Electron paramagnetic resonance measurements of this radical were made at X-band in toluene:dichloromethane (9:1) from 10 to 293K, in toluene from 180 to 293K and at Q-band at 80K. In well-deoxygenated 0.1mM toluene solution at room temperature hyperfine splittings from 11 B, four pairs of 1 H, and 5 pairs of 19 F contribute to an EPR spectrum with many resolved lines. Observed hyperfine couplings were assigned based on DFT calculations and account for all of the fluorines and protons in the molecule. Rigid lattice g values are gx =2.0053, gy =2.0044, and gz =2.0028. Near the melting point of the solvent 1/Tm is enhanced due to motional averaging of g and A anisotropy. Increasing motion above the melting point enhances 1/T1 due to contributions from tumbling-dependent processes. The overall temperature dependence of 1/T1 from 10 to 293K was modeled with the sum of contributions of a process that is linear in T, a Raman process, spin rotation, and modulation of g anisotropy by molecular tumbling. The EPR measurements are consistent with the description of this compound as a substituted aromatic radical, with relatively small spin density on the boron.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app