Add like
Add dislike
Add to saved papers

Ultrasound Detection of Regional Oxidative Stress in Deep Tissues Using Novel Enzyme Loaded Nanoparticles.

Oxidative stress is a powerful tool that is critical to immune mediated responses in healthy individuals, yet additionally plays a crucial role in development of cancer, inflammatory pathologies, and tissue ischemia. Despite this, there remain relatively few molecular tools to study oxidative stress, particularly in living mammals. To develop an intravenously injectable probe capable of labeling sites of oxidative stress in vivo, 200 nm catalase synthetic hollow enzyme loaded nanospheres (catSHELS) are designed and fabricated using a versatile enzyme nanoencapsulation method. catSHELS catalyze H2 O2 to water and oxygen producing microbubbles that can be detected and imaged using a clinical ultrasound system. catSHELS are optimized in vitro to maximize ultrasound signal and their functionality is demonstrated in rat ischemic renal injury model. Ischemic oxidative injury is induced in a single kidney of normal rats by clamping the renal artery for 1 h followed by 2 h of reperfusion. Imaging of both kidneys is performed following the intravenous bolus injection of 1012 catSHELS of the optimized formulation. There is significant increase in ultrasound signal of the injured kidney relative to controls. This method offers a novel intravenous approach to detect oxidative stress in deep tissues in living animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app