Add like
Add dislike
Add to saved papers

Theoretical Prediction on [5]Radialene Sandwich Complexes (CpM) 2 (C 10 H 10 ) (Cp = η 5 -C 5 H 5 ; M = Fe, Co, Ni): Geometry, Spin States, and Bonding.

[5]Radialene, the missing link for synthesis of radialene family, has been finally obtained via the preparation and decomplexation of the [5]radialene-bis-Fe(CO)3 complex. The stability of [5]radialene complex benefits from the coordination with Fe(CO)3 by losing free 1,3-butadiene structures to avoid polymerization. In light of the similar coordination ability of half-sandwiches CpM(Cp = η5 -C5 H5 ; M = Fe, Co, Ni), there is a great possibility that the sandwiched complexes of [5]radialene with CpM are available. Herein, we present the first theoretical prediction on the geometry, spin states and bonding of (CpM)(C10 H10 ) and (CpM)2 (C10 H10 ). For M = Fe, Co, Ni, the ground states of (CpM)(C10 H10 ) and (CpM)2 (C10 H10 ) are doublet and triplet, singlet and singlet, and doublet and triplet states, where each Fe, Co, and Ni adopts 17, 18, and 19 electron-configuration, respectively. In particular, (CpFe)2 (C10 H10 ) and (CpNi)2 (C10 H10 ) have considerable open-shell singlet features. Generally the trans isomers of (CpM)2 (C10 H10 ) with two CpM fragments on the opposite sides of the [5]radialene plane are apparently more stable than the cis ones with CpM fragments on the same side. However, for the singlet and triplet isomers of (CpNi)2 (C10 H10 ) (both cis and trans isomers), the energy differences are relatively small, indicating that these isomers all have the opportunity to exist. Besides, the easy Diels-Alder (DA) dimerization between the [3]dendralene-like fragments of (CpM)(C10 H10 ) suggests the great difficulty in isolating the (CpM)(C10 H10 ) monomer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app