Add like
Add dislike
Add to saved papers

One-Step Fabrication of 3D Nanohierarchical Nickel Nanomace Array To Sinter with Silver NPs and the Interfacial Analysis.

Three-dimensional (3D) nanohierarchical Ni nanomace (Ni NM) array was fabricated on copper substrate by only one step with electroplating method, the unique structure was covered with Au film (Ni/Au NM) without changing its morphology, and in the following step, it was sintered with silver nanoparticle (Ag NP) paste. The structure of the Ni NM array and its surface morphology were characterized by X-ray diffraction, scanning electron microscope (SEM), and atomic force microscope. The sintered interface was investigated by SEM, transmission electron microscopy, and energy-dispersive X-ray spectroscopy to analyze the sintering mechanism. The results showed that a metallurgical bond was successfully achieved at 250 °C without any gas or vacuum shield and extra pressure. The Cu substrate with Ni/Au NM array was able to join with the Ag NP paste without obvious voids. Due to the compatible chemical potential between Ag NPs and Ni/Au NM array, the Au element was able to diffuse into the Ag layer with about 800 nm distance. Based on the excellent 3D nanohierarchical structure, the shear strength of Ni/Au NM array was 6 times stronger than the flat Ni/Au coated substrate. It turned out that the substrate surface played a crucial role in improving the shear strength and sintering efficiency. The 3D Ni NM array had achieved an excellent bonding interface and had great potential application in the microelectronics packaging field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app