Add like
Add dislike
Add to saved papers

Pre-implant modeling of depth lead placement in white matter for maximizing the extent of cortical activation during direct neurostimulation therapy.

INTRODUCTION: The objective of this work was to predict preoperatively the maximum extent to which direct stimulation therapy can propagate through an epileptic circuit for stabilizing refractory focal-onset epilepsy. A pre-surgical workflow is presented which comprises a computationally intensive process for calculating the volume of cortical activation (VOCA) surrounding cylindrical depth contacts virtually placed in white matter. The process employs an activation function (AF) derived from cable modeling of an axon. The AF was extrapolated to describe the three-dimensional activation of axon bundles facilitated by patient-specific diffusion tensor imaging (DTI).

METHODS: The modeling process consisted of the following steps: (1) acquisition of structural MRI and DTI; (2) computation of the electric potential using the finite element method; (3) analysis of the effect of the modeled electric field on depolarizing axon bundles using the AF; (4) predicting distant cortical activation by strategically placing the AF seeds for creating a modulated circuit tractography (MCT) map; and finally, (5) post-implant in vivo validation using Subtracted Activated SPECT (SAS).

RESULTS: The pre-implant simulation calculated non-spherical volumetric regions around the contacts representing areas of hyperpolarization and depolarization. Furthermore, the generated MCT map predicted the extent to which white matter connected epileptic sources were influenced during direct stimulation therapy. Validation of this map was demonstrated post-implantation employing RNS electrocorticography and SAS. The latter technique captured transient alterations in blood flow synched to neural metabolism potentially distant to the stimulated contacts.

CONCLUSION: This pre-implant modeling system offers the potential for predicting optimal depth lead implant sites with a limited set of contacts for modulating the maximal extent of a refractory epileptogenic network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app