Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Substituted Polyesters by Thiol-Ene Modification: Rapid Diversification for Therapeutic Protein Stabilization.

Many proteins, especially those used as therapeutics, are unstable to storage and shipping temperatures, leading to increased costs in research and industry. Therefore, the design and synthesis of novel stabilizers is an important area of investigation. Herein we report new degradable polymers that stabilize proteins to environmental stressors such as refrigeration and elevated temperature. Specifically, polycaprolactones with different pendant groups were synthesized and surveyed for their ability to stabilize an important therapeutic protein to storage and shipping conditions. Ring-opening polymerization (ROP) of an allyl-substituted caprolactone monomer was carried out using the organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to yield a well-defined, alkene-substituted degradable polymer, which was used as a common backbone to control for the degree of polymerization. Relevant side chains such as trehalose, lactose, glucose, carboxybetaine, and oligo(ethylene glycol) were installed via postpolymerization thiol-ene reactions. These degradable polymers were then employed as excipients for the stabilization of the therapeutic protein granulocyte colony-stimulating factor (G-CSF) against storage at 4 °C and shipping temperatures of 60 °C. The best stabilization was observed using the trehalose- and zwitterion- substituted polyesters. Both the trehalose- and carboxybetaine-substituted pCL were further investigated with regard to molecular weight dependence, and it was found that the molecular weight was minimally important for stabilization to refrigeration, but critical for G-CSF stabilization at elevated temperatures. Both high performing zwitterionic and trehalose polyesters were also degraded, and the polymers and degradation products were shown to be noncytotoxic. This work provides potential biocompatible polymers for stabilization of the important therapeutic G-CSF, as well as a general platform for the future discovery of new polymeric protein stabilizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app