Add like
Add dislike
Add to saved papers

Functional Nanoarchitectures For Enhanced Drug Eluting Stents.

Scientific Reports 2017 January 13
Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app