JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The ultrastructural characterization of mitochondria-rich cells as a response to variations in salinity in two types of teleostean pseudobranch: milkfish (Chanos chanos) and Mozambique tilapia (Oreochromis mossambicus).

The pseudobranchs of two euryhaline teleost species, the milkfish (Chanos chanos) and the Mozambique tilapia (Oreochromis mossambicus), were studied after acclimization to different salinities using optical and electron microscopy. The milkfish pseudobranch was the lamellae-free type, with separate lamellae along the filaments containing two groups of mitochondria (Mt)-rich cells: chloride cells (CCs) and pseudobranch type cells (PSCs). Conversely, the tilapia pseudobranch was the embedded type, covered with connective tissues and with only one group of Mt-rich PSCs. Chloride cells were identified according to the apical openings and branched tubular networks around randomly distributed and diversely shaped Mt. Pseudobranchs type cells, however, were characterized according to the orderly arrangement of parallel tubules around closely packed Mt; both the tubules and the Mt were distributed in the vascular side of the cell, but were absent from the apical region. Compared with those of seawater (SW)-acclimated milkfish, the pseudobranchial lamellae of freshwater (FW) specimens were longer on average, and the Mt of the CCs had fewer cristae, were less electron-dense, and were often vacuolated. The Mt in the PSCs of FW-acclimated milkfish and tilapia were larger and more electron-dense than those of their SW-acclimated counterparts; in addition, more tubules were found to aggregately surround the Mt and basolateral membranes in the PSCs of fish from the hypo-osmotic environment. Conversely, the PSCs of tilapia were periodic acid-Schiff (PAS)-positive, and Mt in PSCs were concentrated with more parallel arrays of the tubule system than those of milkfish. Therefore, salinity-dependent changes in the ultrastructures of PSCs suggest their potential role in energy metabolism of both lamellae-free and embedded pseudobranchs, whereas the PAS-positive staining characteristics suggest a role in releasing or storaging polysaccharides in the embedded pseudobranch. J. Morphol. 278:390-402, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app