Add like
Add dislike
Add to saved papers

Effects of estrogen on esophageal function through regulation of Ca 2+ -related proteins.

BACKGROUND: The calcium ion is important for physiological functions in all tissues and organs and essential to many vital functions, including hormone secretion and muscle contraction. The intracellular concentration of calcium is regulated by calcium related proteins such as CaBP-9k, PMCA1, and NCX1. In this study, we investigated the relationship between calcium regulation and esophageal functions such as mucin secretion and smooth muscle contraction.

METHODS: To evaluate the influence of sex steroid hormones, immature rats were treated for 3 days with estradiol (E2), progesterone (P4), and their antagonists (ICI 182,780, and RU486). Esophageal function, transcription level, and localization of CaBP-9k, PMCA1, NCX1, ERα, and MUC2 were examined in the esophagus.

RESULTS: Transcriptional level of Cabp-9k and Muc2 was increased by E2, but not by P4. CaBP-9k, PMCA1, and MUC2 were mainly localized in the mucosal layer. Acidic mucosubstances in the esophagus were increased by E2 and recovered by ICI treatment. Unlike the expression of Cabp-9k, mRNA levels of Pmca1, Ncx1, and Erα were only decreased in response to E2, and recovered by ICI co-treatment group. The contraction of the esophagus and mRNA level of Mylk were reduced by E2. Overall, E2 upregulated mucus secretion, but downregulated muscle contraction in the esophagus through regulation of the expression of calcium related genes and the resultant intracellular calcium level.

CONCLUSIONS: The regulation of E2 in the function of esophagus may be applied to treat esophageal diseases such as reflux esophagitis, achalasia, and esophageal cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app