Add like
Add dislike
Add to saved papers

Platelet secretion is crucial to prevent bleeding in the ischemic brain but not in the inflamed skin or lung in mice.

Blood 2017 March 24
Platelets maintain hemostasis after injury, but also during inflammation. Recent studies have shown that platelets prevent inflammatory bleeding through (hem) immunoreceptor tyrosine-based activation motif-dependent mechanisms irrespective of aggregation during skin and lung inflammation. Although the exact mechanisms underlying this process remain unknown, it was speculated that mediators released from platelet granules might be involved. Maintaining cerebral hemostasis during stroke treatment is of high clinical relevance because hemorrhage may aggravate the disease state and increase mortality. Although it was shown that platelets help maintain hemostasis in the ischemic brain, their exact contribution remains ill defined. Here we show that Unc13d -/- / Nbeal2 -/- mice, which lack platelet α- and dense-granule secretion, show no signs of hemorrhage in models of skin or lung inflammation. In stark contrast, lack of platelet granule release resulted in impaired hemostasis in the ischemic brain after transient middle cerebral artery occlusion leading to increased intracranial hemorrhage and mortality. Our results reveal for the first time that platelet granule constituents are essential for maintenance of hemostasis during thrombo-inflammatory brain infarction but not experimental inflammation of the skin or lung, thereby uncovering vascular bed-specific differences in the prevention of inflammatory bleeding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app