JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice.

The low O2 experienced at high altitude is a significant challenge to effective aerobic locomotion, as it requires sustained tissue O2 delivery in addition to the appropriate allocation of metabolic substrates. Here, we tested whether high- and low-altitude deer mice ( Peromyscus maniculatus ) have evolved different acclimation responses to hypoxia with respect to muscle metabolism and fuel use during submaximal exercise. Using F1 generation high- and low-altitude deer mice that were born and raised in common conditions, we assessed 1 ) fuel use during exercise, 2 ) metabolic enzyme activities, and 3 ) gene expression for key transporters and enzymes in the gastrocnemius. After hypoxia acclimation, highland mice showed a significant increase in carbohydrate oxidation and higher relative reliance on this fuel during exercise at 75% maximal O2 consumption. Compared with lowland mice, highland mice had consistently higher activities of oxidative and fatty acid oxidation enzymes in the gastrocnemius. In contrast, only after hypoxia acclimation did activities of hexokinase increase significantly in the muscle of highland mice to levels greater than lowland mice. Highland mice also responded to acclimation with increases in muscle gene expression for hexokinase 1 and 2 genes, whereas both populations increased mRNA expression for glucose transporters. Changes in skeletal muscle with acclimation suggest that highland mice had an increased capacity for the uptake and oxidation of circulatory glucose. Our results demonstrate that highland mice have evolved a distinct mode of hypoxia acclimation that involves an increase in carbohydrate use during exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app