Add like
Add dislike
Add to saved papers

Zebrafish let-7b acts downstream of hypoxia-inducible factor-1α to assist in hypoxia-mediated cell proliferation and cell cycle regulation.

Life Sciences 2017 Februrary 16
AIMS: Hypoxia-inducible factor-1α (HIF-1α) is a transcriptional regulator of cellular responses to hypoxic stress. MicroRNAs (miRNAs) play an essential role in hypoxia-mediated cellular responses. Previous studies have identified some let-7 family members as hypoxia-regulated miRNAs (HRMs). In the present study, we aimed to investigate whether zebrafish let-7b/7f contribute cellular hypoxic response in a Hif-1α-dependent manner.

MAIN METHODS: Stable suppression of zebrafish hif-1α was achieved by microinjection of an optimized short-hairpin RNA (shRNA) expression vector. Next-generation sequencing was conducted to characterize miRNA and mRNA expression profiles. MiRNA promoter analysis and target detection was performed by dual-luciferase assay. Quantitative real-time PCR (qRT-PCR) and western blot were used to determine the expression of let-7b/7f, Hif-1α and Foxh1. Proliferation of ZF4 cells was examined using Cell Counting Kit-8 (CCK-8) and cell cycle progression was analyzed by flow cytometry assay.

KEY FINDINGS: Correlation between 7 miRNAs and 76 putative targets was identified based on integrated analysis of miRNA-mRNA profiles. Let-7b and let-7f were further considered as potential HRMs, with let-7b further validated as Hif-1α up-regulated. In addition, Forkhead-box H1 (Foxh1) was confirmed as a bona fide downstream target of let-7b. Furthermore, overexpression of both let-7b and let-7f repressed cell proliferation through blocking cell cycle progression of the G1-S transition.

SIGNIFICANCE: Our findings for the first time suggest zebrafish let-7b acts downstream of Hif-1α to assist in hypoxia-mediated cell proliferation and cell cycle regulation at least in part through the downregulation of foxh1. We also identified 4 novel potential HIF-1α-regulated miRNAs in zebrafish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app