Add like
Add dislike
Add to saved papers

DNALK2 inhibits the proliferation and invasiveness of breast cancer MDA-MB-231 cells through the Smad-dependent pathway.

Oncology Reports 2017 Februrary
Breast cancer is one of the most common malignant neoplasms diagnosed in females worldwide. Bone morphogenetic proteins (BMPs), which belong to the TGF-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration and apoptosis in breast cancer. BMPs can bind to type I and II serine/threonine kinase receptors to regulate cell proliferation, invasion, migration, and apoptosis. Type I receptors are expressed in various breast cancer cell lines and primary tumor samples. Activin‑like kinase 2 (ALK2) is generally expressed in breast cancer cells (MDA-MB-231, MCF7, SK-BR-3 and MDA-MB‑468); however, the effect of ALK2 on the proliferation and metastasis of breast cancer cells remains unknown. We used a dominant-negative mutant of ALK2 to research the function of ALK2. We aimed to ascertain whether dominant-negative mutant ALK2 adenovirus vector (DNALK2) receptors can compete with wild-type ALK2 receptors. The present study showed that DNALK2 inhibited the growth, migration and metastasis of breast cancer cells by inhibiting the SMAD-dependent pathway and downregulating connective tissue growth factor and inhibitor of differentiation 1 expression, in vivo and in vitro. These observations indicate that ALK2 is a potential therapeutic agent for the treatment of breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app