Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MOF-Derived Hollow Cage Ni x Co 3- x O 4 and Their Synergy with Graphene for Outstanding Supercapacitors.

Small 2017 March
Highly optimized nickel cobalt mixed oxide has been derived from zeolite imidazole frameworks. While the pure cobalt oxide gives only 178.7 F g-1 as the specific capacitance at a current density of 1 A g-1 , the optimized Ni:Co 1:1 has given an extremely high and unprecedented specific capacitance of 1931 F g-1 at a current density of 1 A g-1 , with a capacitance retention of 69.5% after 5000 cycles in a three electrode test. This optimized Ni:Co 1:1 mixed oxide is further used to make a composite of nickel cobalt mixed oxide/graphene 3D hydrogel for enhancing the electrochemical performance by virtue of a continuous and porous graphene conductive network. The electrode made from GNi:Co 1:1 successfully achieves an even higher specific capacitance of 2870.8 F g-1 at 1 A g-1 and also shows a significant improvement in the cyclic stability with 81% capacitance retention after 5000 cycles. An asymmetric supercapacitor is also assembled using a pure graphene 3D hydrogel as the negative electrode and the GNi:Co 1:1 as the positive electrode. With a potential window of 1.5 V and binder free electrodes, the capacitor gives a high specific energy density of 50.2 Wh kg-1 at a high power density of 750 W kg-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app