Add like
Add dislike
Add to saved papers

Distant ultrafast energy transfer in a trimetallic {Ru-Ru-Cr} complex facilitated by hole delocalization.

Multi-metallic complexes based on {Ru-Cr}, {Ru-Ru} and {Ru-Ru-Cr} fragments are investigated for their light-harvesting and long-range energy transfer properties. We report the synthesis and characterization of [Ru(tpy)(bpy)(μ-CN)Ru(py)4 Cl]2+ and [Ru(tpy)(bpy)(μ-CN)Ru(py)4 (μ-NC)Cr(CN)5 ]. The intercalation of {RuII (py)4 } linked by cyanide bridges between {Ru(tpy)(bpy)} and {Cr(CN)5 } results in efficient, distant energy transfer followed by emission from the Cr moiety. Characterization of the energy transfer process based on photophysical and ultrafast time-resolved absorption suggests the delocalization of holes in the excited state, providing a pathway for energy transfer between the end moieties. The proposed mechanism opens the door to utilize this family of complexes as an appealing platform for the design of antenna compounds as the properties of the fragments could be tuned independently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app