Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quaternary climate change drives allo-peripatric speciation and refugial divergence in the Dysosma versipellis-pleiantha complex from different forest types in China.

Scientific Reports 2017 January 12
Subtropical China harbours the world's most diverse temperate flora, but little is known about the roles of geographical and eco-climatic factors underlying the region's exceptionally high levels of species diversity and endemism. Here we address this key question by investigating the spatio-temporal and ecological processes of divergence within the Dysosma versipellis-pleiantha species complex, endemic to subtropical China. Our cpDNA phylogeny showed that this monophyletic group of understory herbs is derived from a Late Pliocene ancestor of the Qinghai-Tibetan Plateau (QTP)/Southwest China. Genetic and ENM data in conjunction with niche differentiation analyses support that the early divergence of D. versipellis and D. pleiantha proceeded through allo-peripatric speciation, possibly triggered by Early Pleistocene climate change, while subsequent climate-induced cycles of range contractions/expansions enhanced the eco-geographical isolation of both taxa. Furthermore, modelling of population-genetic data indicated that major lineage divergences within D. versipellis likely resulted from long-term allopatric population isolation in multiple localized refugia over the last glacial/interglacial periods, and which in turn fostered endemic species formation (D. difformis, D. majoensis) from within D. versipellis in Southwest China. These findings point to an overriding role of Quaternary climate change in triggering essentially allopatric (incipient) speciation in this group of forest-restricted plant species in subtropical China.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app