JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Further evidence for microtubule-independent dimerization of TPPP/p25.

Scientific Reports 2017 January 12
Tubulin Polymerization Promoting Protein (TPPP/p25) is a brain-specific disordered protein that modulates the dynamics and stability of the microtubule network by its assembly promoting, cross-linking and acetylation enhancing activities. In normal brain it is expressed primarily in differentiated oligodendrocytes; however, at pathological conditions it is enriched in inclusions of both neurons and oligodendrocytes characteristic for Parkinson's disease and multiple system atrophy, respectively. The objective of this paper is to highlight a critical point of a recently published Skoufias's paper in which the crucial role of the microtubules in TPPP/p25 dimerization leading to microtubule bundling was suggested. However, our previous and present data provide evidence for the microtubule-independent dimerization of TPPP/p25 and its stabilization by disulphide bridges. In addition, our bimolecular fluorescence complementation experiments revealed the dimerization ability of both the full length and the terminal-free (CORE) TPPP/p25 forms, however, while TPPP/p25 aligned along the bundled microtubule network, the associated CORE segments distributed mostly homogeneously within the cytosol. Now, we identified a molecular model from the possible ones suggested in the Skoufias's paper that could be responsible for stabilization of the microtubule network in the course of the oligodendrocyte differentiation, consequently in the constitution of the myelin sheath.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app