Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies.

OBJECTIVE: To investigate the morphological features of chronic inflammatory demyelinating polyneuropathy (CIDP) with autoantibodies directed against paranodal junctional molecules, particularly focusing on the fine structures of the paranodes.

METHODS: We assessed sural nerve biopsy specimens obtained from 9 patients with CIDP with anti-neurofascin-155 antibodies and 1 patient with anti-contactin-1 antibodies. 13 patients with CIDP without these antibodies were also examined to compare pathological findings.

RESULTS: Characteristic light and electron microscopy findings in transverse sections from patients with anti-neurofascin-155 and anti-contactin-1 antibodies indicated a slight reduction in myelinated fibre density, with scattered myelin ovoids, and the absence of macrophage-mediated demyelination or onion bulbs. Teased-fibre preparations revealed that segmental demyelination tended to be found in patients with relatively higher frequencies of axonal degeneration and was tandemly found at consecutive nodes of Ranvier in a single fibre. Assessment of longitudinal sections by electron microscopy revealed that detachment of terminal myelin loops from the axolemma was frequently found at the paranode in patients with anti-neurofascin-155 and anti-contactin-1 antibody-positive CIDP compared with patients with antibody-negative CIDP. Patients with anti-neurofascin-155 antibodies showed a positive correlation between the frequencies of axo-glial detachment at the paranode and axonal degeneration, as assessed by teased-fibre preparations (p<0.05).

CONCLUSIONS: Paranodal dissection without classical macrophage-mediated demyelination is the characteristic feature of patients with CIDP with autoantibodies to paranodal axo-glial junctional molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app