Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

Mechanisms of oncogene-induced genomic instability.

Activating mutations in oncogenes promote uncontrolled proliferation and malignant transformation. Approximately 30% of human cancers carry mutations in the RAS oncogene. Paradoxically, expression of mutant constitutively active Ras protein in primary human cells results in a premature proliferation arrest known as oncogene-induced senescence (OIS). This is more commonly observed in human pre-neoplasia than in neoplastic lesions, and is considered a tumor suppressor mechanism. Senescent cells are still metabolically active but in a status of cell cycle arrest characterized by specific morphological and physiological features that distinguish them from both proliferating cells, and cells growth-arrested by other means. Although the molecular mechanisms by which OIS is established are not totally understood, the current view is that OIS in human cells is tightly linked to persistent activation of the DNA damage response (DDR) pathway, as a consequence of replication stress. Here we will highlight recent advances in our understanding of molecular mechanisms leading to hyper-replication stress in response to oncogene activation, and of the crosstalk between replication stress and persistent activation of the DDR. We will also discuss new evidence for DNA repair deficiencies during OIS, which might increase the genomic instability that drives senescence bypass and malignant transformation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app