Letter
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantum Transport in Gated Dangling-Bond Atomic Wires.

Nano Letters 2017 January 12
A single line of dangling bonds (DBs) on Si(100)-2 × 1:H surface forms a perfect metallic atomic-wire. In this work, we investigate quantum transport properties of such dangling bond wires (DBWs) by a state-of-the-art first-principles technique. It is found that the conductance of the DBW can be gated by electrostatic potential and orbital overlap due to only a single DB center (DBC) within a distance of ∼16 Å from the DBW. The gating effect is more pronounced for two DBCs and especially, when these two DB "gates" are within ∼3.9 Å from each other. These effective length scales are in excellent agreement with those measured in scanning tunnelling microscope experiments. By analyzing transmission spectrum and density of states of DBC-DBW systems, with or without subsurface doping, for different length of the DBW, distance between DBCs and the DBW, and distance between DB gates, we conclude that charge transport in a DBW can be regulated to have both an on-state and an off-state using only one or two DBs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app