COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells.

The genetic polymorphism I148M of patatin-like phospholipase domain-containing 3 (PNPLA3) is robustly associated with hepatic steatosis and its progression to steatohepatitis, fibrosis, and cancer. Hepatic stellate cells (HSCs) are key players in the development of liver fibrosis, but the role of PNPLA3 and its variant I148M in this process is poorly understood. Here we analyzed the expression of PNPLA3 during human HSC activation and thereby explored how a PNPLA3 variant impacts hepatic fibrogenesis. We show that expression of PNPLA3 gene and protein increases during the early phases of activation and remains elevated in fully activated HSCs (P < 0.01). Knockdown of PNPLA3 significantly decreases the profibrogenic protein alpha-smooth muscle actin (P < 0.05). Primary human I148M HSCs displayed significantly higher expression and release of proinflammatory cytokines, such as chemokine (C-C motif) ligand 5 (P < 0.01) and granulocyte-macrophage colony-stimulating factor (P < 0.001), thus contributing to migration of immune cells (P < 0.05). Primary I148M HSCs showed reduced retinol (P < 0.001) but higher lipid droplet content (P < 0.001). In line with this, LX-2 cells stably overexpressing I148M showed augmented proliferation and migration, lower retinol, and abolished retinoid X receptor/retinoid A receptor transcriptional activities but more lipid droplets. Knockdown of I148M PNPLA3 (P < 0.001) also reduces chemokine (C-C motif) ligand 5 and collagen1α1 expression (P < 0.05). Notably, I148M cells display reduced peroxisome proliferator-activated receptor gamma transcriptional activity, and this effect was attributed to increased c-Jun N-terminal kinase, thereby inhibiting peroxisome proliferator-activated receptor gamma through serine 84 phosphorylation and promoting activator protein 1 transcription. Conversely, the c-Jun N-terminal kinase inhibitor SP600125 and the peroxisome proliferator-activated receptor gamma agonist rosiglitazone decreased activator protein 1 promoter activity.

CONCLUSIONS: These data indicate that PNPLA3 is required for HSC activation and that its genetic variant I148M potentiates the profibrogenic features of HSCs, providing a molecular mechanism for the higher risk of progression and severity of liver diseases conferred to patients carrying the I148M variant. (Hepatology 2017;65:1875-1890).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app