Add like
Add dislike
Add to saved papers

Hyperbilirubinemia Influences Sleep-Wake Cycles of Term Newborns in a Non-Linear Manner.

Hyperbilirubinemia is a common cause for irreversible neuronal influence in the brain of term newborns, while the feature of neurological symptoms associated with hyperbilirubinemia has not been well characterized yet. In the present study, we examined a total of 203 neonates suffering from hyperbilirubinemia with a bedside amplitude-integrated Electroencephalography (aEEG) device, in order to determine whether there is any special change in sleep-wake cycles (SWCs). Among these patients, 14 cases showed no recognizable SWCs with the total serum bilirubin (TSB) level at 483.9-996.2 μmol/L; 75 cases exhibited reduced SWCs with the TSB level at 311.2-688.5 μmol/L; and the rest cases had the normal SWCs. The number of the normal SWCs occurrence had a significant negative correlation with the increased TSB level in a non-linear manner (r = -0.689, p <0.001). In addition, the increased TSB reshaped the structure of SWC by narrowing down the broadband and broadening the narrowband. Spearman's correlation analysis indicated a significant negative correlation between the TSB level and the ratio of broadband (r = -0.618, p < 0.001), a significant positive correlation between the TSB level and the narrowband ratio (r = 0.618, p < 0.001), respectively. Furthermore, the change of SWC seemed like a continuous phenomenon, and the hyperbilirubinemia caused SWC changes was fit into a loess model in this paper. In summary, the hyperbilirubinemia influenced SWC of term newborns significantly at a non-linear manner, and these results revealed the feature of the neurological sequela that is associated with TSB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app