Add like
Add dislike
Add to saved papers

The Structure of Linkers Affects the DNA Binding Properties of Tethered Dinuclear Ruthenium(II) Metallo-Intercalators.

With the long-term aim of enhancing the binding properties of dinuclear RuII -based DNA light-switch complexes, a series of eight structurally related mono- and dinuclear systems are reported in which the linker of the bridging ligand has been modulated. These tethered systems have been designed to explore issues of steric demand at the binding site and the thermodynamic cost of entropy loss upon binding. Detailed spectroscopic and isothermal titration calorimetry (ITC) studies on the new complexes reveal that one of the linkers produces a dinuclear system that binds to duplex DNA with an affinity (Kb >107  m-1 ) that is higher than its corresponding monometallic complex and is the highest affinity for a non-threading bis-intercalating metal complex. These studies confirm that the tether has a major effect on the binding properties of dinuclear complexes containing intercalating units and establishes key design rules for the construction of dinuclear complexes with enhanced DNA binding characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app