Add like
Add dislike
Add to saved papers

The Influence of para Substituents in Bis(N-Heterocyclic Carbene) Palladium Pincer Complexes for Electrocatalytic CO 2 Reduction.

Inorganic Chemistry 2017 Februrary 7
The effect of modifying the pyridyl para position of lutidine-linked bis(N-heterocyclic carbene) Pd pincer complexes is studied both experimentally (R = OMe, H, Br, and COOR) and computationally, showing a strong effect on the first reduction potential of the complex and allowing the reduction potential to be tuned over a wide range in relation to the Hammett σp constant of the para substituent. The effect of the pyridyl para substituent on electron density of the metal center, frontier orbital energies, and dissociation energy of the trans ligand are also investigated in the context of reactivity with CO2 through electrochemical characterization of the complexes under N2 and CO2 and controlled potential electrolysis experiments where CO2 is reduced to CO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app