JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Polarization-Tailored Fano Interference in Plasmonic Crystals: A Mueller Matrix Model of Anisotropic Fano Resonance.

ACS Nano 2017 Februrary 29
Fano resonance is observed in a wide range of micro- and nano-optical systems and has been a subject of intensive investigations due to its numerous potential applications. Methods that can control or modulate Fano resonance by tuning some experimentally accessible parameters are highly desirable for realistic applications. Here we present a simple yet elegant approach using the Mueller matrix formalism for controlling the Fano interference effect and engineering the resulting asymmetric spectral line shape in an anisotropic optical system. The approach is founded on a generalized model of anisotropic Fano resonance, which relates the spectral asymmetry to physically meaningful and experimentally accessible parameters of interference, namely, the Fano phase shift and the relative amplitudes of the interfering modes. The differences in these parameters between orthogonal linear polarizations in an anisotropic system are exploited to desirably tune the Fano spectral asymmetry using pre- and postselection of optimized polarization states. The concept is demonstrated on waveguided plasmonic crystals using Mueller matrix-based polarization analysis. The approach enabled tailoring of several exotic regimes of Fano resonance in a single device, including the complete reversal of the spectral asymmetry, and shows potential for applications involving control and manipulation of electromagnetic waves at the nanoscale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app