Add like
Add dislike
Add to saved papers

Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors.

Nanotechnology 2017 January 11
A facile anion exchange strategy was applied to the synthesis of porous NiS hexagonal nanoplates (NiS HNPs) as an electrode material for supercapacitors. It was found that Na2S concentration is a key factor to achieve porous NiS hexagonal nanoplates with well-defined architecture. Porous NiS hexagonal nanoplates exhibited a specific capacitance of 1897 F g(-1) at a current density of 1 A g(-1). NiS HNPs//activated carbon (AC) asymmetric supercapacitor (ASC) shows a long cycle lifespan (about 100% capacity retention after 4000 cycles at a current density of 3 A g(-1)) with a maximum energy density of 11.6 Wh kg(-1) at a large loading mass of about 30 mg. Impressively, two NiS HNPs//AC ASCs in series could light up a red LED for about 30 min. The remarkable electrochemical performance of NiS HNPs is ascribed to their unique hierarchical porous architectures. The anion exchange method is a facile and versatile strategy for the synthesis of metal sulfides with high performance for energy storage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app